Fundamentals of Trace Impurity Analysis by ICP-OES

Thomas Kozikowski

Key Topics

- Defining our Goals
- Basic Sample Preparation Concerns
- Standards for Trace Metals Analysis
 - Stability
 - Compatibility Concerns
- ICP-OES Testing Strategies
 - Calibration Techniques
 - Interference Considerations
 - Detection Limits

Key Topics

- Defining our Goals
- Basic Sample Preparation Concerns
- Standards for Trace Metals Analysis
 - Stability
 - Compatibility Concerns
- ICP-OES Testing Strategies
 - Calibration Techniques
 - Interference Considerations
 - Detection Limits

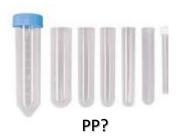
Overall Goals for a TMI Analysis

(Trace Metallic Impurity)

- ✓ Measuring what's not supposed to be present
- ✓ Ignoring what is expected to be in solution
- ✓ Eliminating sources of contamination
- ✓ Defining instrument detection limits (DLs)
- ✓ Defining real-world DLs of the sample
- ✓ Identifying interferences & method contamination
- ✓ Confirming observations by second methods
 - If possible

Key Topics

- ✓ Defining our Goals
- Basic Sample Preparation Concerns
- Standards for Trace Metals Analysis
 - Stability
 - Compatibility Concerns
- ICP-OES Testing Strategies
 - Calibration Techniques
 - Interference Considerations
 - Detection Limits


Sources of Contamination

- Containers
- Pipet Tips
- Weigh Boats
- Clean Air
- Reagents
- Digestion Methods

Container Selection

- LDPE, HDPE, PTFE, PFA, PP, Borosilicate Glass
 - Plastic made from virgin polyethylene is critical
- Sample tubes vs. bottles
- Leach containers with dilute HNO₃ (1-5% v/v)
- High temperature leaching is more effective (50°C)

Containers: More in-depth

Element	LDPE	HDPE	PP	PTFE	Boro
Al	2	*	87		8750
Ва					5000
В					9400
Ca		28	*	25	2800
Fe		150		95	125
Mg	6	11	575	15	125
K				16	3600
Na	42	63	42	90	27500
Zn					125

Values are the ng of impurity per 125mL bottle.

* We've seen it on occasion.

The good news, precious metals never show up in container materials.

Other Sources of Contamination

- Pipet Tips
 - Same contamination concerns as with sample tubes
 - Leaching tips if effective
 - Sterilized tips are for biologicals, not inorganic metals
- Weigh Boats
 - Notorious for dust contamination
 - Colored boats will have metallic contamination
 - Virgin or "natural" material is critical
 - May have surface calcium contamination

Reagent Purity

- Clean Acids (HNO₃, HCl, etc.)
- Clean Bases (TEA, NH₄OH, etc.)
- Clean DI Water (ASTM Type 1, 18MΩ)
- Particle Filtration (0.3µm or smaller)
- Use of reagent blanks
 - Critical for blank subtraction to determine true real-world sample impurity levels and detection limits

Digestion Methods

- How does this all tie in?
 - Open-air digestions
 - Clean air more critical
 - Microwave assisted digestions
 - Tubes are typically reused
 - Was everything cleaned properly?
 - Reagent/Method Blanks essential for proper assessment of TMI in a sample

Key Topics

- ✓ Defining our Goals
- ✓ Basic Sample Preparation Concerns
- Standards for Trace Metals Analysis
 - Stability
 - Compatibility Concerns
- ICP-OES Testing Strategies
 - Calibration Techniques
 - Interference Considerations
 - Detection Limits

Standards for Trace Metals Analysis

- Standards for trace impurity testing can be fairly low – less than 10ppm
- The lower the concentration, generally the more elements you can put together
- Certain physical and chemical stability limitations exist
- Certain elements have compatibility issues depending on acid matrix

Stability

- Physical stability issues include:
 - Transpiration Loss of H₂O through the walls of the bottle
 - Evaporation Loss of H₂O through the bottle cap threads
 - Temperature Change in density due to temperature
- Ways to minimize these issues include:
 - Resealing aluminized bags over your standards (heat seal)
 - Place standards in fridge for long term storage
 - Properly tighten caps (overtightening is just as bad)
 - Remove density from the equation (convert to w/w and weigh aliquots)

Precious Metals-Specific Stability

- Chemical stability issues involving HCl include:
 - Ag with HCl (Silver Chloride Precipitate, Photosensitive)
 - Tl⁺¹ with HCl (Needs a Tl⁺³ starting material such as Tl₂O₃)
 - Pt with Cs (Can form Cs₂PtCl₆ precipitate)
 - Re with Cs (Can also form a precipitate like Pt)
 - Os with HNO₃ can cause insoluble oxides or OsO₄ to form
 - Au must have HCl for long term stability
 - Low level Pd must have HCl for long term stability
 - Hg and Pd in HNO₃ in LDPE can be lost to the bottle walls
 - Borosilicate glass is okay
 - Hg and Pd in HCl is okay in LDPE

Compatibility Concerns

- Regarding pure standards:
 - Most elements are okay in HNO₃ only
 - Some elements need/prefer HCl
 - Some elements need/prefer HF

HNO₃ HCI HF

Preferred Acid (if other than HNO₃ only)

Н			Not	Checl	ked by	y ICP												Не
Li	Be		HF				Н	Cl				В	C	N	0	H	Ne	
Na	Mg												Al	Si	Р	S	Cl	Ar
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr		Υ	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	ı	Xe
Cs	Ва	*	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	**	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Мс	Lv	Ts	Og

*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
**	Ac	Th	Pa	J	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

Specific Acid Compatibility Concerns

Н			Not	Checl	ked by	y ICP												Не
Li	Be		Avoid HF			Avoid HCl						В	С	N	0	F	Ne	
Na	Mg												Al	Si	Р	S	Cl	Ar
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr		Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	ı	Xe
Cs	Ba	*	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	**	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Мс	Lv	Ts	Og

*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

Periodic Table of TMI-OES Standards

Н		-	This standard scheme is used for																		
Li	Ве	l	ICP-OES using 2 calibration B C N O F Ne TMISA-0 0.0 5% v/v HNO3																		
Na	Mg	(curves. Al Si P S Cl Ar										TMI3A-LOW	0.1	5% v/v HNO3						
K	Ca	Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr TMI3A-HIGH 10 5% V/V HNO3											5% v/v HNO3								
Rb	Sr		Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Miss-o										TMI3B-0	0.0	5% HNO3 / 1% HCI						
Cs	Ba	*	Lu	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn	TMI3B-LOW	0.1	5% HNO3 / 1% HCI
Fr	Ra	**	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq					TMI38-HIGH	1.0	5% HNO3 / 1% HCI
	Potential Future Inclusion																				
	* La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb																				
		**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No					

Set 1 contains silver, so it does not have any HCl present
Both sets contain As to allow for evaluation on 228.812nm (Major Cd Interference)

Key Topics

- ✓ Defining our Goals
- ✓ Basic Sample Preparation Concerns
- ✓ Standards for Trace Metals Analysis
 - **✓** Stability
 - √ Compatibility Concerns
- ICP-OES Testing Strategies
 - Calibration Techniques
 - Interference Considerations
 - Detection Limits

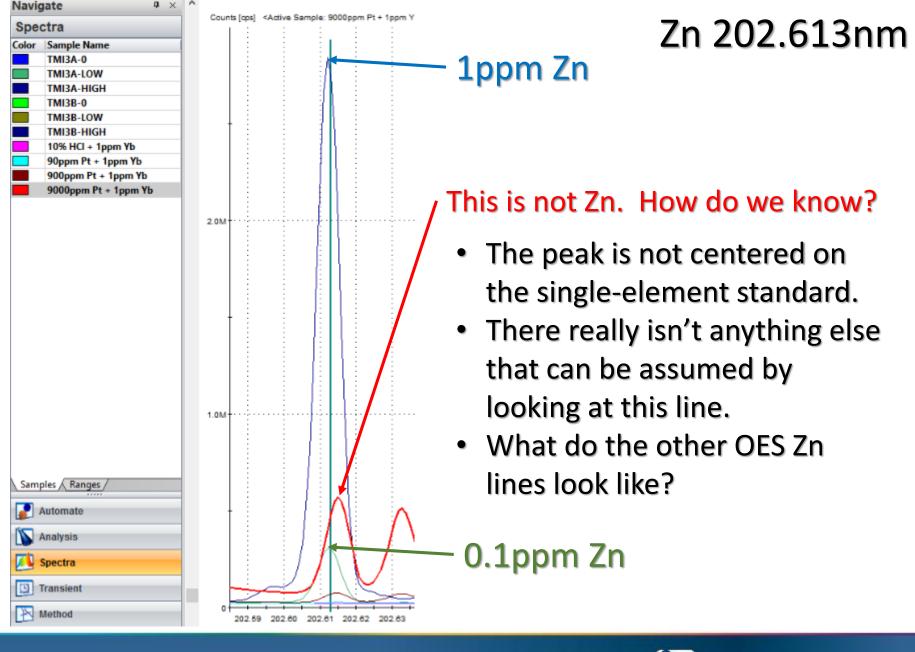
Calibration Techniques

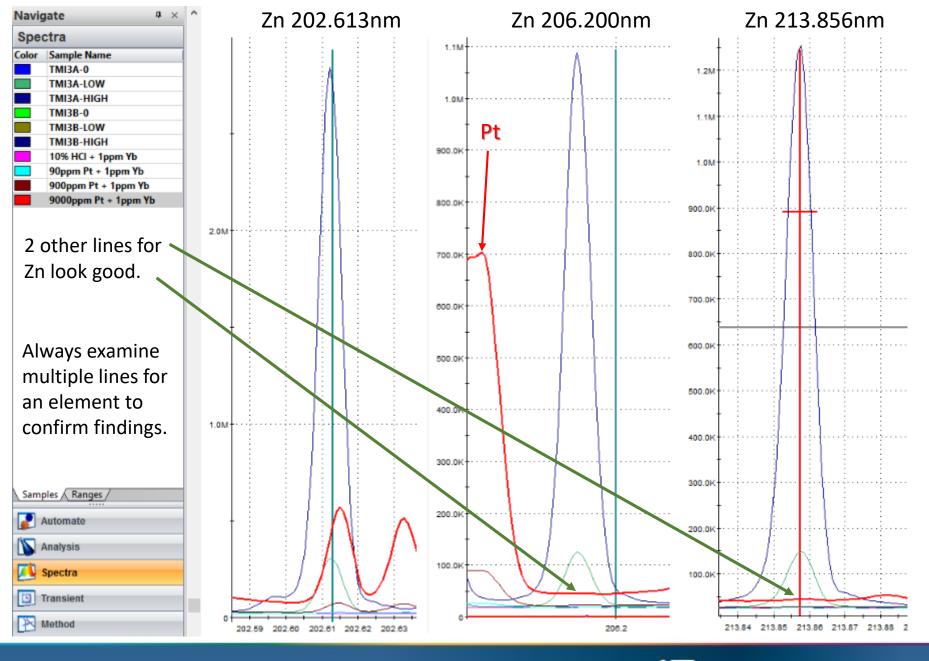
- Calibration Curves
 - Easier to automate using instrument software
 - Requires careful inspection of spectra to check for:
 - Spectral Interferences
 - Background Correction Points
 - Can use an internal standard to correct for intro system and plasma based effects
 - This makes matrix matching less critical
 - Must choose an appropriate element absent from sample and free of interferences
 - ICP signal response is generally linear

Calibration Techniques

Standard Additions

- Much more accurate since matrices are matched
- Requires there to be a clear flat background for an appropriate "zero" calculation
- Again, requires careful inspection of spectra to check for:
 - Spectral Interferences
 - Background Correction Points
- Generally does not employ the use of an internal standard
- Instrument software usually does not allow for this method, almost always requires offline spreadsheet work
- Multi-element additions can be tricky


Key Topics

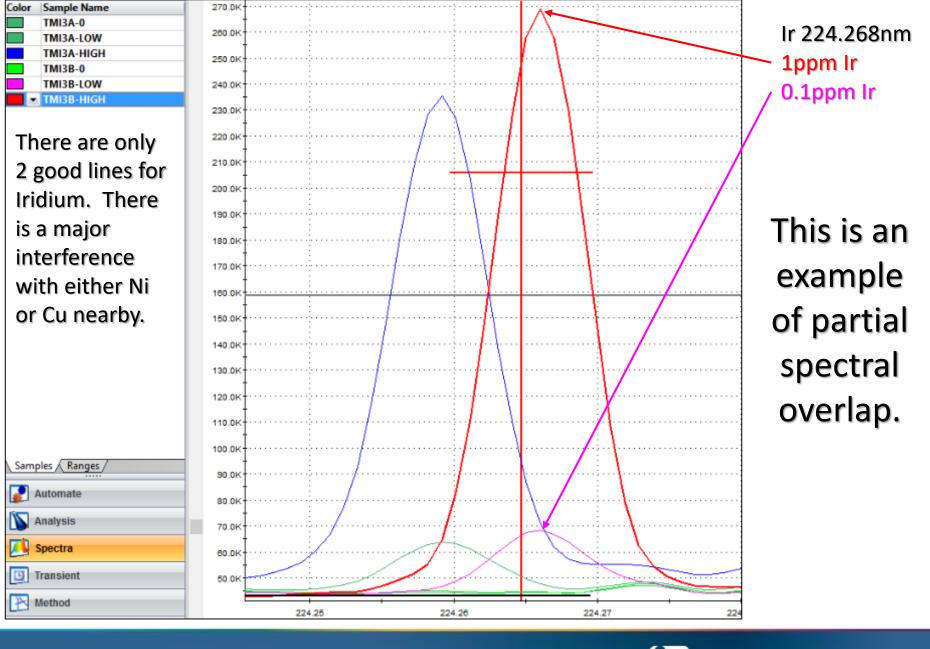

- ✓ Defining our Goals
- ✓ Basic Sample Preparation Concerns
- √ Standards for Trace Metals Analysis
 - **✓** Stability
 - √ Compatibility Concerns
- ICP-OES Testing Strategies
 - ✓ Calibration Techniques
 - Interference Considerations
 - Detection Limits

Interference Considerations

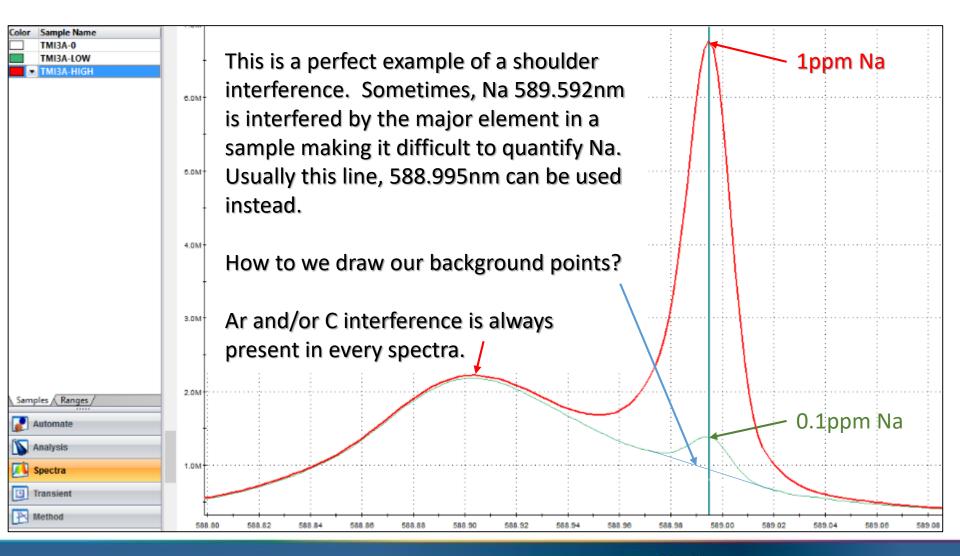
- You should always examine spectra
 - Check for proper background corrections
 - Make sure the peaks are centered
 - Some instrument software packages don't always do what you think they do (quick manual calculation checks are not that complicated)
- If you need to determine the source of an interference:
 - Run single element standards to confirm
 - Check blanks after samples (memory interferences)

Types of Interferences

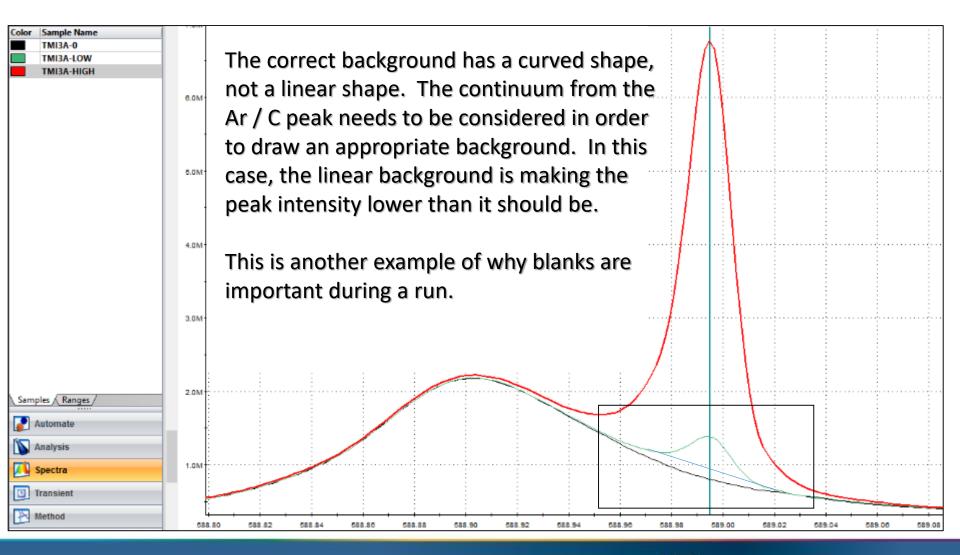
Complete spectral overlap

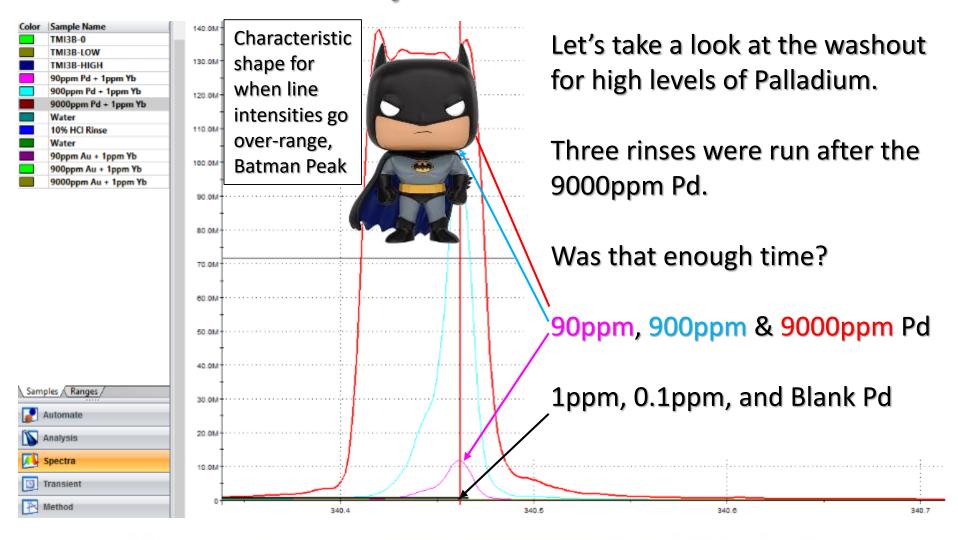

- Must be confirmed using single element standards
- Some instrument software suites allow for subtraction

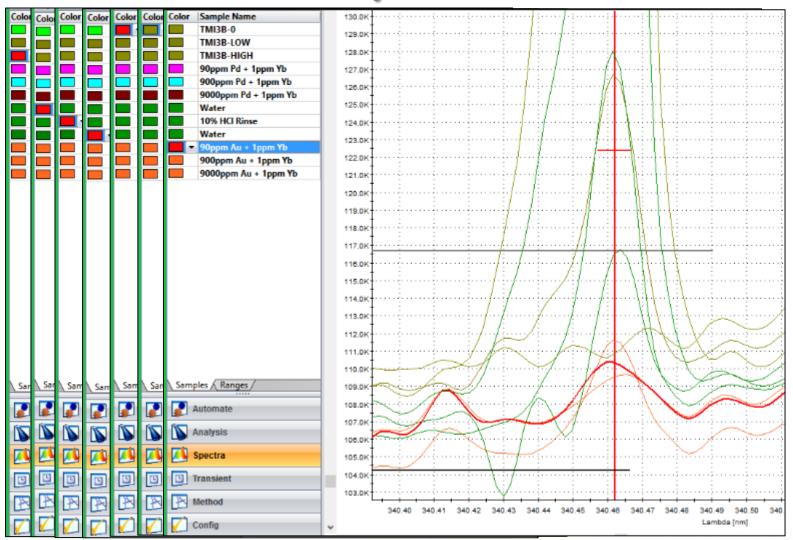
Shoulder interferences


- Are not too complicated to correct
- Must use a curve background correction instead of linear

Memory interferences


- Can cause trouble if running multiple samples
- Different rinse strategies can help speed up washout


Shoulder Interferences


Shoulder Interferences

Memory Interferences

Memory Interferences

Memory Interferences

- 3 Rinses (as samples) did not fully washout Pd
 - Rinses never went to baseline according to initial blank
- Now there is a peak in the subsequent Au standards
 - We are not confident that Pd is present due to potential memory interferences
 - We should rerun Au on a clean system OR
 - We should confirm results by ICP-MS

Washout Recommendations

- Water by itself works for certain elements.
- 5-10% HCl works well for most of the precious metals
- Adding thiourea can help with Au and Hg
- Hydroxylamine hydrochloride helps with Os
- When in a crunch for time, change out the peri-pump tubing.
 - The PVC material tends to be the worst offender for memory interferences.
- Glass systems should work well for precious metals
- HF-resistant systems can have trouble with Hg in HNO₃

Key Topics

- ✓ Defining our Goals
- ✓ Basic Sample Preparation Concerns
- √ Standards for Trace Metals Analysis
 - √Stability
 - √ Compatibility Concerns
- ICP-OES Testing Strategies
 - √ Calibration Techniques
 - ✓ Interference Considerations
 - Detection Limits

Defining Detection Limits

- Limit of Detection (LOD)
 - Defined as 3 times the standard deviation of the blank
 - Can be calculated using
 - peak to peak noise or extrapolation to zero on a calibration curve
 - Calibration curve should have 3 concentration zones (low,mid,high) approximately 10x difference in concentration, (ex. 0.1ppm, 1ppm, 10ppm)

Defining Detection Limits

- Limit of Quantification (LOQ)
 - Defined as 10 times the standard deviation of the blank
 - Calculated using the same values used for LODs
 - LOQs will have an uncertainty of approximately 30% at the 95% confidence level
 - Most impurities found in clean standards are below LOQ, which is one reason why we don't "certify" trace levels of impurity

Defining Detection Limits

- Detection limit values are run-specific on an ICP
 - Defined by the background signal noise of a blank
 - Depend on the standards used
 - Depend on instrument conditions
 - As an instrument ages, the detection limit values will raise over time
 - You will never have the same levels attainable at the time of instrument setup with a brand new ICP

Real World Detection Limits

- Must use dilution factors to translate back to starting material
- Most samples must be diluted in order to run at levels that will keep the ICP running
 - High Na, K, Cs can shut the plasma off
 - High total dissolved solids (TDS) can clog the nebulizer
 - Greater than 2000ppm TDS on MS will make internal lenses dirty (requires a service call to clean)

Real World Detection Limits

99.93µg/g Sn ← 17,738µg/g Sn ← 1,000,000µg/g Sn Found 452pg/g Pb → Found 80.23ng/g Pb → Found 4,523ng/g Pb DL 1pg/g

Dilution of sample acceptable for **ICP-MS Testing**

DL 0.18ng/g

Sn dissolved in HCl and H₂O OK on ICP-OES

DL 10ng/g Pb

Sn Shot Starting Material

ICP-OES Detection Limits

Emission Line	LOD (ppb)	LOQ (ppb)	Major Problems?
Au 242.795	6	20	Pt overlap
Au 267.595	23	75	Ta, Nb, or Co?
Ir 212.681	12	40	Pt shoulder
Ir 224.268	18	60	
Pd 324.270, 340.458	26-30	85-100	
Pt 214.423, 191.170	27-36	90-120	
Rh 343.489	26	85	Pt shoulder
Rh 233.477	12	40	
Ru 240.272	6	20	Pt shoulder
Ru 267.876	11	35	Cr, Zr, and Pt shoulder
Ag 328.068, 338.289	5-9	15-30	
Re 221.426	8	25	Pt
Re 227.525	15	50	Sr
Os 225.585, 228.226	13-14	45-46	

These detection limits are based on peak to peak noise and a 100ppb calibration standard.

9000ppm Pt, Au, Pd were evaluated for interferences.

ICP-MS Detection Limits

Mass	LOD (ppb)	LOQ (ppb)	Major Interference
^{99,101} Ru	0.1	0.3	
¹⁰³ Rh	0.1	0.3	
^{105,108} Pd	0.1-0.2	0.3-0.6	¹⁰⁸ Cd
^{107,109} Ag	0.1-0.2	0.3-0.6	
^{185,187} Re	0.1	0.3	¹⁸⁷ Os
^{188,189} Os	0.1	0.3	
^{191,193} lr	0.1	0.3	
^{194,194} Pt	0.1	0.3	
¹⁹⁷ Au	0.3	0.9	

These detection limits are based on the standard deviation of 3 blank readings and a 4ppb spike standard.

100ppm Pt, Au, Pd were run by standard additions

Results shown are multiplied by 90 to show DLs & LOQs with respect to a 9000ppm solution of each element, Pt, Au, Pd.

Instrument Comparison

Element	ICP-MS LOQ (ppb)	ICP-OES LOQ (ppb)
Ru	0.3	20-35
Rh	0.3	40-85
Pd	0.3-0.6	85-100
Ag	0.3-0.6	15-30
Re	0.3	25-50
Os	0.3	45-46
Ir	0.3	40-60
Pt	0.3	90-120
Au	0.9	20-75

Even though sample run on the ICP-MS was diluted 100X, DLs and LOQs were 2 orders of magnitude better.

ICP-MS uses less sample for testing (larger dilution with better results).

ICP-MS has less interferences for precious metal elements.

ICP-OES has better % RSDs.

Key Topics

- ✓ Defining our Goals
- ✓ Basic Sample Preparation Concerns
- √ Standards for Trace Metals Analysis
 - **✓** Stability
 - √ Compatibility Concerns
- ✓ ICP-OES Testing Strategies
 - ✓ Calibration Techniques
 - ✓ Interference Considerations
 - ✓ Detection Limits

Summary

- Plan out your testing strategy & sample prep
- Eliminate sources for issues
- Choose standards wisely
- Flesh out the details for your ICP analysis
 - Calibration technique
 - Examine your spectra!
 - Interference determination and elimination
 - Detection limit comparisons

Technical Support – Available to Everyone Online Resources at inorganicventures.com

Customers can visit our website's Tech Center, which includes:

- Interactive Periodic Table
- Sample Preparation Guide
- Trace Analysis Guide
- ICP Operations Guide
- Expert Advice
- And much, much more.

